The eastern North American monarch population is notable for its annual southward late-summer/autumn migration from the northern and central United States and southern Canada to Florida and Mexico. During the fall migration, monarchs cover thousands of miles, with a corresponding multi-generational return north. The western North American population of monarchs west of the Rocky Mountains often migrates to sites in southern California but has been found in overwintering Mexican sites as well. Monarchs were transported to the International Space Station and were bred there.
Danaus (Greek ), a great-grandson of Zeus, was a mythical king in Egypt or Libya, who founded Argos; Plexippus was one of the 50 sons of Aegyptus, the twin brother of Danaus.
In Homeric Greek plexippos (πληξιππος) means "one who urges on horses", i.e. "rider or ". In the 10th edition of Systema Naturae, at the bottom of page 467, Linnaeus wrote that the names of the Danai festivi, the division of the genus to which Papilio plexippus belonged, were derived from the sons of Aegyptus. Linnaeus divided his large genus Papilio, containing all known butterfly species, into what we would now call subgenera. The Danai festivi formed one of the 'subgenera', containing colourful species, as opposed to the Danai candidi, containing species with bright white wings. Linnaeus wrote: "Danaorum Candidorum nomina a filiabus Danai Aegypti, Festivorum a filiis mutuatus sunt." (= The names of the Danai candidi have been derived from the daughters of Danaus, those of the Danai festivi from the sons of Aegyptus).
Robert Michael Pyle suggested Danaus is a masculinised version of Danaë (Greek ), Danaus’s great-great-granddaughter, to whom Zeus came as a shower of gold, which seemed to him a more appropriate source for the name of this butterfly. ξ1
There are three species of monarch butterflies:
Six subspecies and two color morphs of D. plexippus have been identified:
The percentage of the white morph in Oahu is nearing 10%. On other Hawaiian islands, the white morph occurs at a relatively low frequency. White monarchs ( nivosus) have been found throughout the world, including Australia, New Zealand, Indonesia, and the United States.
Some taxonomists disagree on these classifications.
Monarchs were classified under the family Danaidae, but have been re-classified under Nymphalidae since at least 1958.
A 2015 paper identiified genes from wasp bracovirus
Monarch flight has been described as "slow and sailing". ξ2 Monarch flight speed has been estimated by a number of researchers. One scientist examined all prior estimates and concluded their flight speed is approximately 9 km/hr or 5.5 mph. For comparison, the average human jogs at a rate of 6–8 mph.
Adults exhibit sexual dimorphism. Males are slightly larger than females and have a black patch or spot of androconial scales on each hindwing (in some butterflies, these patches disperse pheromones, but are not known to do so in monarchs). The male's black veins on his wings are lighter and narrower than those of females.
One variation, the "white monarch", observed in Australia, New Zealand, Indonesia and the United States, is called nivosus by . It is grayish-white in all areas of its wings that are normally orange and is only about 1% or less of all monarchs, but populations as high as 10% exist on Oahu in Hawaii.
The monarch has six legs like all insects, but uses only its middle legs and hindlegs as the forelegs are vestigial, as in all other Nymphalidae, and held against its body.
In North America, the monarch ranges from southern Canada through northern South America. It has also been found in Bermuda, Cook Islands, Hawaii, Cuba and other Caribbean islands the Solomon Islands, New Caledonia, New Zealand, Papua New Guinea, Australia, the Azores, the Canary Islands, Gibraltar,Gibraltar Ornithological and Natural History Society "Provisional species list of the Lepidoptera" Philippines, and North Africa. It appears in the UK in some years as an accidental migrant.
Overwintering populations of D. plexippus are found in Mexico, California, along the Gulf coast, year-round in Florida, and in Arizona where the habitat has the specific conditions necessary for their survival.Cech, Rick and Tudor, Guy (2005). Butterflies of the East Coast. Princeton University Press, Princeton, NJ. ISBN 0-691-09055-6Iftner, David C.; Shuey, John A. and Calhoun, John C. (1992). Butterflies and Skippers of Ohio. College of Biological Sciences and The Ohio State University. ISBN 0-86727-107-8 Their overwintering habitat typically provides access to streams, plenty of sunlight (enabling body temperatures that allow flight), and appropriate roosting vegetation, and is relatively free of predators. Overwintering, roosting butterflies have been seen on basswoods, elms, sumacs, locusts, oaks, osage-oranges, mulberries, pecans, willows, cottonwoods, and mesquites. While breeding, monarch habitats can be found in agricultural fields, pasture land, prairie remnants, urban and suburban residential areas, gardens, trees, and roadsides – anywhere where there is access to larval host plants. Habitat restoration is a primary goal in monarch conservation efforts. Habitat requirements change during migration. During the fall migration, butterflies must have access to nectar-producing plants. During the spring migration, butterflies must have access to larval food plants and nectar plants.
The first instar caterpillar that emerges out of the egg is pale green and translucent. It lacks banding coloration or tentacles. The larvae or caterpillar eats its egg case and begins to feed on milkweed. It is during this stage of growth that the caterpillar begins to sequester . The circular motion a caterpillar uses while eating milkweed prevents the flow of latex that could entrap it.
The second instar larva develops a characteristic pattern of white, yellow and black transverse bands. It is no longer translucent but is covered in short setae. Pairs of black tentacles (stinkhorns) begin to grow. One pair grows on the thorax and another pair on the abdomen.
The third instar larva has more distinct bands and the two pairs of tentacles become longer. Legs on the thorax differentiate into a smaller pair near the head and larger pairs further back. These third stage caterpillars began to eat along the leaf edges.
The fourth instar has a different banding pattern. It develops white spots on the prolegs near the back of the caterpillar.
The fifth instar larva has a more complex banding pattern and white dots on the prolegs, with front legs that are small and very close to the head.
At this stage of development, it is relatively large compared to the earlier instars. The caterpillar completes its growth. At this point, it is 25 to 45 mm long and 5 to 8 mm wide. This can be compared to the first instar, which was 2 to 6 mm long and 0.5 to 1.5 mm wide. Fifth instar larvae increase 2000 times from first instars. Fifth-stage instar larva chew through the petiole or mid-rev of milkweed leaves and stop the flow of latex. After this, they eat more leaf tissue. Before pupation, larva must consume milkweed to increase their mass. Larva stop feeding and search for a pupation site. The caterpillar attaches itself securely to a horizontal surface, using a silk pad. At this point, it latches on with its hindlegs and hangs down. It then molts into an opaque, blue-green chrysalis with small gold dots. At normal summer temperatures, it matures in a few weeks. The cuticle of the chrysalis becomes transparent and the monarch's characteristic orange and black wings become visible. At the end of metamorphosis, the adult emerges from the chrysalis, expands and dries its wings and flies away. Monarch metamorphosis from egg to adult occurs during the warm summer temperatures in as little as 25 days, extending to as many as seven weeks during cool spring conditions. During the development, both larva and their milkweed hosts are vulnerable to weather extremes, predators, parasites and diseases; commonly fewer than 10% of monarch eggs and caterpillars survive.
Courtship occurs in two phases. During the aerial phase, a male pursues and often forces a female to the ground. During the ground phase, the butterflies copulate and remain attached for about 30–60 minutes. Only 30% of mating attempts end in copulation, suggesting that females may be able to avoid mating, though some have more success than others. During copulation, a male transfers his spermatophore to a female. Along with sperm, the spermatophore provides a female with nutrition, which aids her in egg-laying. An increase in spermatophore size increases the fecundity of female monarchs. Males that produce larger spermatophores also fertilize more females' eggs.
Asclepias curassavica or Tropical Milkweed, is often planted as an ornamental in butterfly gardens. Its distribution is probably worldwide. Year-round plantings may be the cause of new overwintering sites along the U.S. Gulf coast. At these locations, it rarely freezes so the plants are present year-round. This leads to year-round breeding of monarchs, which is not beneficial to the migration. This also leads to a dramatic buildup of the dangerous parasite, Ophryocystis elektroscirrha. Because of the risks to the monarch population posed by this plant, it is not recommended for planting.
Monarchs obtain moisture and minerals from damp soil and wet gravel, a behavior known as mud-puddling. The monarch has also been noticed puddling at an oil stain on pavement.
Aposematism
Monarchs are foul-tasting and poisonous due to the presence of cardenolide aglycones in their bodies, which the caterpillars ingest as they feed on milkweed. By ingesting a large amount of plants in the genus Asclepias, primarily milkweed, monarch caterpillars are able to sequester cardiac glycosides, or more specifically cardenolides, which are steroids that act in heart-arresting ways similar to digitalis. It has been found that monarchs are able to sequester cardenolides most effectively from plants of intermediate cardenolide content rather than those of high or low content.
Additional studies have shown that different species of milkweed have different effects on growth, virulence, and transmission of parasites. One species, Asclepias curassavica, appears to reduce the proportion of monarchs infected by parasites. There are two possible explanations for the positive role of A. curassavica on the monarch caterpillar: that it promotes overall monarch health to boost the monarch's immune system; or that chemicals from the plant have a direct negative effect on the parasites.
After the caterpillar becomes a butterfly, the toxin shift to different parts of the body. Since many birds attack the wings of the butterfly, having three times the cardiac glycosides in the wings leaves predators with a very foul taste and may prevent them from ever ingesting the body of the butterfly. In order to combat predators that remove the wings only to ingest the abdomen, monarchs keep the most potent cardiac glycosides in their abdomens.
Mimicry
Monarchs share the defense of noxious taste with the similar-appearing viceroy butterfly in what is perhaps one of the most well-known examples of mimicry. Though long purported to be an example of Bates mimicry, the viceroy is actually reportedly more unpalatable than the monarch, making this a case of Müllerian mimicry.
A growing number of homeowners are establishing butterfly gardens; monarchs can be attracted by cultivating a butterfly garden with specific milkweed species and nectar plants. Efforts are underway to establish these monarch waystations.
An IMAX film Flight of the Butterflies describes the story of the Fred Urquhart, Brugger and Catalina Trail to then unknown migration to Mexican overwintering areas.
Sanctuaries and reserves have been created at over-wintering locations in Mexico and California to limit habitat destruction. These sites can generate significant tourism revenue.
Organizations and individuals participate in tagging programs. Tagging information is used to study migration patterns. More information on tagging can be found in the Monarch Butterfly Migration wiki page.
Where this practice becomes problematic is when monarchs are 'mass-reared'. Stories in the Huffington Post in 2015 and Discover Magazine in 2016 have summarized the controversy around this issue. The frequent media reports of monarch declines has empowered many homeowners to attempt to rear as many monarchs as possible in their homes and then release them to the wild in an effort to "boost the monarch population." Some individuals have taken this practice to the extreme, with massive operations that rear thousands of monarchs at once, like one in Linn County, Iowa. However, the practice of rearing "large" numbers of monarchs in captivity for release into the wild is not condoned by monarch scientists, because of the risks of genetic issues and disease spread. Rearing Monarchs Responsibly: A conservationist’s guide to raising monarchs for science and education. Monarch Joint Venture, University of Minnesota One of the biggest concerns of mass-rearing is the potential for spreading the monarch parasite, OE, into the wild. This parasite can rapidly build up in captive monarchs, especially if they are housed together. The spores of the parasite also can quickly contaminate all housing equipment, so that all subsequent monarchs reared in the same containers then become infected. One researcher stated that rearing more than 100 monarchs constitutes "mass-rearing" and should not be done.
In addition to the disease risks, researchers believe these captive-reared monarchs are not as fit as wild ones, owing to the unnatural conditions they are raised in. Homeowners often raise monarchs in plastic or glass containers in their kitchens, basements, porches, etc., and under artificial lighting and controlled temperatures. Such conditions would not mimic what the monarchs are used to in the wild, and may result in adult monarchs that are unsuited for the realities of their wild existence. In support of this, a recent study by a citizen-scientist found that captive-reared monarchs have a lower migration success rate than wild monarchs do.
There is no genetic differentiation between the migratory populations of eastern and western North America. Recent research has identified the specific areas in the genome of the monarch that regulate migration. There appears to be no genetic difference between a migrating and nonmigrating monarch but the gene is expressed in migrating monarchs but not expressed in nonmigrating monarchs.
The number of monarchs overwintering in Mexico has increased over the last few years. However, the population is still 32% lower than historic average. The monarch population covers about 4.01 hectares in Mexico. In the past numbers have been as high as 18 hectares, but on average about 6 hectares. This year (2016) the average population of monarchs is estimated at 200 million. Historically, on average there are 300 million monarchs. This increase is attributed to favorable breeding conditions in the summer of 2015.
A study in 2016 claimed that the long-term trend in the size of the overwintering sites is cause for concern. After a ten-fold drop in the overwintering numbers of the eastern monarch butterfly population over the last decade, this study claimed there was a 11%–57% probability that this population will go quasi-extinct over the next 20 years.
In Canada the monarch butterfly is listed as a Species of Special Concern in Ontario. In fall 2016, the Committee on the Status of Endangered Wildlife in Canada recently proposed that the monarch be listed as endangered in Canada, as opposed to its current listing as a 'species of concern' in that country. This move, once enacted, would protect critical monarch habitat in Canada, such as major fall accumulation areas in southern Ontario, but it would also have implications for citizen scientists who work with monarchs, and for classroom activities. If the monarch were federally protected in Canada, these activities could be limited, or require federal permits.
In February 2015, the U.S. Fish and Wildlife Service provided a statistic showing that nearly a billion monarchs have vanished from the overwintering sites since 1990. At that time, one of the main reasons cited was the herbicides used by farmers and homeowners on milkweed, a plant used as a food source, a home and a nursery by the monarchs. A 2016 study also attributed the last decade's ten-fold decline in overwintering numbers of the eastern monarch population to the loss of breeding habitat, namely the many species of milkweed (Asclepias spp.) that developing larvae require for food, however scientists believe there are other factors as well. A number of researchers believe milkweed loss during the breeding season is the cause because declines in milkweed abundance are highly correlated with the adoption of herbicide-tolerant genetically modified corn and soybeans, which now constitute 89% and 94% of these crops, respectively, in the U.S. However, correlative evidence does not imply causation, and other possible causes of the overwintering declines have been proposed.
Several species of birds have acquired methods that allow them to ingest monarchs without experiencing the ill effects associated with the cardiac glycosides. The oriole is able to eat the monarch through an exaptation of its feeding behavior that gives it the ability to identify by taste and reject them. The grosbeak, on the other hand, has adapted the ability an insensitivity to secondary plant poisons that allows it to ingest monarchs without vomiting. As a result, orioles and grosbeaks will periodically have high levels of cardenolides in their bodies, and they will be forced to go on periods of reduced monarch consumption. This cycle of predation effectively reduces the potential predation of monarchs by 50 percent and indicates that monarch aposematism has a legitimate purpose.
Some mice are able to withstand large doses of the toxin. Overwintering adults become less toxic over time making them more vulnerable to predators. In Mexico, about 14% of the overwintering monarchs are eaten by birds and mice.
In North America, eggs and first instar larvae of the monarch are eaten by larvae and adults of the Introduced species Asian lady beetle ( Harmonia axyridis). The Chinese mantis ( Tenodera sinensis) will consume the larvae once the gut is removed thus avoiding cardenolides. Wasps commonly consume larvae.
One monarch researcher emphasizes that predation on eggs, larvae or adults is natural, since monarchs are part of the food chain, thus people should not take steps to kill predators of monarchs.
On Oahu, a white morph of the monarch has emerged. This is because of the introduction, in 1965 and 1966, of two bulbul species, Pycnonotus cafer and Pycnonotus jocosus. They are now the most common insectivore birds, and probably the only ones preying on insects as large as the monarch. Monarchs in Hawaii are known to have low cardiac glycoside levels, but the birds may also be tolerant of the chemical. The two species hunt the larvae and some pupae from the branches and undersides of leaves in milkweed bushes. The bulbuls also eat resting and ovipositing adults, but rarely flying ones. Because of its colour, the white morph has a higher survival rate than the orange one. This is either because of apostatic selection (i.e. the birds have learned the orange monarchs can be eaten), because of camouflage (the white morph matches the white pubescence of milkweed or the patches of light shining through foliage), or because the white morph does not fit the bird's search image of a typical monarch, so is thus avoided.
The bacterium Micrococcus flacidifex danai also infects larvae. Just before pupation, the larvae migrate to a horizontal surface and die a few hours later, attached only by one pair of prolegs, with the thorax and abdomen hanging limp. The body turns black shortly after. The bacterium Pseudomonas aeruginosa has no invasive powers, but causes secondary infections in weakened insects. It is a common cause of death in laboratory-reared insects.
The Ophryocystis elektroscirrha is another parasite of the monarch. It infects the subcutaneous tissues and propagates by spores formed during the pupal stage. The spores are found over all of the body of infected butterflies, with the greatest number on the abdomen. These spores are passed, from female to caterpillar, when spores rub off during egg-laying and are then ingested by caterpillars. Severely infected individuals are weak, unable to expand their wings, or unable to eclose, and have shortened lifespans, but parasite levels vary in populations. This is not the case in laboratory rearing, where after a few generations, all individuals can be infected. Infection with this parasite creates an effect known as culling whereby migrating monarchs that are infected are less likely to complete the migration. This results in overwintering populations with lower parasite loads. Owners of commercial butterfly breeding operations claim that they take steps to control this parasite in their practices,
although this claim is doubted by most scientists who study monarchs.
A 2014 study acknowledged that while "the protection of overwintering habitat has no doubt gone a long way towards conserving monarchs that breed throughout eastern North America", their research indicates that habitat loss on breeding grounds in the United States is the main cause of both recent and projected population declines.
There is concern that climate change will dramatically affect the monarch migration. A study from 2015 examined the impact of warming temperatures on the breeding range of the monarch, and showed that in the next 50 years the monarch hostplant will expand its range further north into Canada, and that the monarchs will follow this.
While this will expand the breeding locations of the monarch, this will also have the effect of increasing the distance that monarchs must travel to reach their overwintering destination in Mexico, and this could results in greater mortality during the migration.
On 20 June 2014, President Barack Obama issued a Presidential Memorandum entitled "Creating a Federal Strategy to Promote the Health of Honey Bees and Other Pollinators". The Memorandum established a Pollinator Health Task Force, to be co-chaired by the Secretary of Agriculture and the Administrator of the Environmental Protection Agency, and stated:
In May 2015, the Pollinator Health Task Force issued a "National Strategy to Promote the Health of Honey Bees and Other Pollinators". The Strategy lays out current and planned federal actions to achieve three goals, two of which are:
Many of the priority projects that the National Strategy identifies will focus on the I-35 corridor extending for from Texas to Minnesota that provides spring and summer breeding habitats in the monarch’s key migration corridor.
There have been a number of national and local efforts underway to establish pollinator habitat along highways and roadways, although this effort is controversial. Conservationists are lobbying transportation departments and utilities to reduce their use of herbicides and specifically encourage milkweed to grow along roadways and power lines. Reducing roadside mowing and application of herbicides during the butterfly breeding season will encourage milkweed growth. Conservationists lobby agriculture companies to set aside areas that remain unsprayed to allow the butterflies to breed. This practice is controversial because of the high risk of butterfly mortality near roads, as several studies have shown that millions of monarchs and other butterflies are killed by cars every year
While there are few scientific studies on the subject, the practice of butterfly gardening is commonly thought to increase the populations of butterflies.Glassberg, J. (1995). Enjoying butterflies more: attract butterflies to your backyard. Marietta, OH: Bird Watcher's Digest Press. Efforts to increase monarch populations by establishing butterfly gardens require particular attention to the butterfly's food preferences and population cycles, as well to the conditions needed to propagate milkweed. For example, in the Washington, D.C. area and elsewhere in the northeastern United States, monarchs prefer to reproduce on common milkweed ( Asclepias syriaca), especially when its foliage is soft and fresh. As monarch reproduction in that area peaks in late summer when milkweed foliage is old and tough, A. syriaca needs to be cut back at least by half in June to assure that it will be regrowing rapidly when monarch reproduction reaches its peak. In addition, milkweed seed may need a period of cold treatment before it will germinate.
Detailed measurements
/ref>
The study found significant differences in overall wing size and in the physical dimensions of wings. Males tended to have larger wings than females, and were heavier than females, on average. Both males and females had similar thorax dimensions (wing muscles are contained in the thorax). Female monarchs tended to have thicker wings, which is thought to convey greater tensile strength. This would make female wings less likely to be damaged during migration. Also, females had lower wing-loading than males (wing loading is a value derived from the ratio of wing size to body weight), which would mean females require less energy to fly. A table with the average measurements of each variable is shown.
Distribution and habitat
Life cycle
Eggs
Larvae
Pupa
Adult
Reproduction
Pictorial lifecycle
Larval host plants
North America
Adult food sources
Migration
Defense against predators
Human interaction
Captive-rearing
Genome
Status
Threats
Habitat loss due to herbicide use
Losses during migration
Predators
Parasites
Confusion of host plants
Loss of overwintering habitat
Climate
Conservation efforts
The number of migrating Monarch butterflies sank to the lowest recorded population level in 2013–14, and there is an imminent risk of failed migration.
• Monarch Butterflies: Increase the Eastern population of the monarch butterfly to 225 million butterflies occupying an area of approximately 15 acres (6 hectares) in the overwintering grounds in Mexico, through domestic/international actions and public-private partnerships, by 2020.
• Pollinator Habitat Acreage: Restore or enhance 7 million acres of land for pollinators over the next 5 years through Federal actions and public/private partnerships.
See also
Cited sources
External links
References
|
|